
Tangible Value
in Haskell

1Friday, January 25, 2008

•http://www.youtube.com/watch?v=faJ8N0giqzw

•http://conal.net/papers/Eros/

•http://journal.conal.net/#
[[separating IO from logic -- example]]

•http://conal-elliott.blogspot.com/search/label/TV

Conal Elliott

2Friday, January 25, 2008

http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV

Eros
3Friday, January 25, 2008

4Friday, January 25, 2008

applications:

1. user-friendly
2. usable
3. concrete
4. visual

libraries:

1. programmer-friendly
2. composable
3. abstract
4. syntactic

5Friday, January 25, 2008

•Write programs that do one thing and do it well

•Write programs to work together

•Write programs to handle text streams, because that
is a universal interface

UNIX philosophy

Doug McIlroy

6Friday, January 25, 2008

godfat ~/p/l/l/l/proc> ls | sort | cat -n
 1 bind.rb
 2 chain.rb
 3 compose.rb
 4 curry.rb

7Friday, January 25, 2008

TV
8Friday, January 25, 2008

原始
程式

9Friday, January 25, 2008

module Grading where

import Data.List (sort)
import Data.Map (Map,empty,keys,insertWith,findWithDefault)
import Text.Printf

import Interface.TV
import Interface.TV.OFun() -- work around GHC bug. ticket #1145

10Friday, January 25, 2008

grades = do
 src <- readFile "tasks"
 let pairs = map (split.words) (lines src)
 grades = foldr insert empty pairs
 mapM_ (draw grades) (sort (keys grades))
 where
 insert (s, g) = insertWith (++) s [g]
 split [name,mark] = (name, read mark)
 draw g s = printf "%s\t%s\tAverage: %f\n" s (show marks) avg
 where
 marks = findWithDefault (error "No such student") s g
 avg = sum marks / fromIntegral (length marks) :: Double

11Friday, January 25, 2008

抽出
I/O

12Friday, January 25, 2008

gradingStr src = concatMap (draw grades) (sort (keys grades))
 where
 pairs = map (split.words) (lines src)
 grades = foldr insert empty pairs

 insert (s, g) = insertWith (++) s [g]
 split [name,mark] = (name, read mark)
 draw g s = printf "%s\t%s\tAverage: %f\n" s (show marks) avg
 where
 marks = findWithDefault (error "No such student") s g
 avg = sum marks / fromIntegral (length marks) :: Double

13Friday, January 25, 2008

type GradingStr = String -> String
gradingStr :: GradingStr

grades_2 = readFile "tasks" >>= return . gradingStr >>= putStr

14Friday, January 25, 2008

in
TV

15Friday, January 25, 2008

type GradingStr = String -> String
gradingStr :: GradingStr

grades_2 = readFile "tasks" >>= return . gradingStr >>= putStr

gradingStrOut = oLambda (fileIn "tasks") stringOut
gradingStrT :: TV KIO GradingStr
gradingStrT = tv gradingStrOut gradingStr

grades_3 = runTV gradingStrT

16Friday, January 25, 2008

Eros
17Friday, January 25, 2008

(1)
18Friday, January 25, 2008

視覺化
19Friday, January 25, 2008

20Friday, January 25, 2008

21Friday, January 25, 2008

22Friday, January 25, 2008

23Friday, January 25, 2008

(2)
24Friday, January 25, 2008

融合
25Friday, January 25, 2008

26Friday, January 25, 2008

27Friday, January 25, 2008

28Friday, January 25, 2008

first :: (a -> a') -> ((a, b) -> (a',b))
second :: (b -> b') -> ((a, b) -> (a ,b'))
result :: (b -> b') -> ((a->b) -> (a->b'))

first f = \ (a, b) -> (f a, b)
second g = \ (a, b) -> (a, g b)
result g = \ f -> g . f

29Friday, January 25, 2008

sf :: (b->b') -> (a,(b ,c))
 -> (a,(b',c))

sf = second.first

frsrf :: (c->c') -> (a->(f,b->(c ,g)),e)
 -> (a->(f,b->(c',g)),e)

frsrf = first.result.second.result.first

funFirst ::
 (d -> (c->a)) -> ((d,b) -> (c->(a,b)))

30Friday, January 25, 2008

(3)
31Friday, January 25, 2008

MV
分離

32Friday, January 25, 2008

type TV a = (Out a, a)

type Out a = ...
put :: Put a -> Out a
opair :: Out a -> Out b -> Out (a, b)
olambda :: In a -> Out b -> Out (a->b)

type In a = ...
get :: Get a -> In a
ipair :: In a -> In b -> In (a,b)

33Friday, January 25, 2008

•TypeCompose

•DeepArrow

•DataDriven

•Phooey

Eros

•TV

•GuiTV

•wxHaskell

•wxWidgets

34Friday, January 25, 2008

•Tangible polymorphism?

•Direct structural tweaks

•Symmetric In/Out (ilambda)

•“GUIs are types” as GUI design guide

•TVs as composable MVC

To explore

35Friday, January 25, 2008

http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV
http://conal-elliott.blogspot.com/search/label/TV

