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•http://www.youtube.com/watch?v=faJ8N0giqzw

•http://conal.net/papers/Eros/

•http://journal.conal.net/#
[[separating IO from logic -- example]]

•http://conal-elliott.blogspot.com/search/label/TV

Conal Elliott
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Eros
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applications:

1. user-friendly
2. usable
3. concrete
4. visual

libraries:

1. programmer-friendly
2. composable
3. abstract
4. syntactic
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•Write programs that do one thing and do it well

•Write programs to work together

•Write programs to handle text streams, because that 
is a universal interface

UNIX philosophy

Doug McIlroy
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godfat ~/p/l/l/l/proc> ls | sort | cat -n
     1 bind.rb
     2 chain.rb
     3 compose.rb
     4 curry.rb
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TV
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原始
程式
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module Grading where

import Data.List (sort)
import Data.Map (Map,empty,keys,insertWith,findWithDefault)
import Text.Printf

import Interface.TV
import Interface.TV.OFun() -- work around GHC bug.  ticket #1145
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grades = do
    src <- readFile "tasks"
    let pairs  = map (split.words) (lines src)
        grades = foldr insert empty pairs
    mapM_ (draw grades) (sort (keys grades))
  where
    insert (s, g) = insertWith (++) s [g]
    split [name,mark] = (name, read mark)
    draw g s = printf "%s\t%s\tAverage: %f\n" s (show marks) avg
      where
        marks = findWithDefault (error "No such student") s g
        avg   = sum marks / fromIntegral (length marks) :: Double
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抽出
I/O
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gradingStr src = concatMap (draw grades) (sort (keys grades))
  where
    pairs  = map (split.words) (lines src)
    grades = foldr insert empty pairs
    
    insert (s, g) = insertWith (++) s [g]
    split [name,mark] = (name, read mark)
    draw g s = printf "%s\t%s\tAverage: %f\n" s (show marks) avg
      where
        marks = findWithDefault (error "No such student") s g
        avg   = sum marks / fromIntegral (length marks) :: Double
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type GradingStr = String -> String
gradingStr :: GradingStr

grades_2 = readFile "tasks" >>= return . gradingStr >>= putStr
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in
TV
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type GradingStr = String -> String
gradingStr :: GradingStr

grades_2 = readFile "tasks" >>= return . gradingStr >>= putStr

gradingStrOut = oLambda (fileIn "tasks") stringOut
gradingStrT :: TV KIO GradingStr
gradingStrT = tv gradingStrOut gradingStr

grades_3 = runTV gradingStrT

16Friday, January 25, 2008



Eros
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(1)
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視覺化
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(2)
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融合
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first  :: (a -> a') -> ((a, b) -> (a',b ))
second :: (b -> b') -> ((a, b) -> (a ,b'))
result :: (b -> b') -> ((a->b) -> (a->b'))

first  f = \ (a, b) -> (f a,   b)
second g = \ (a, b) -> (  a, g b)
result g = \ f -> g . f
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sf :: (b->b') -> (a,(b ,c))
              -> (a,(b',c))

sf = second.first

frsrf :: (c->c') -> (a->(f,b->(c ,g)),e)
                 -> (a->(f,b->(c',g)),e)

frsrf = first.result.second.result.first

funFirst ::
  (d -> (c->a)) -> ((d,b) -> (c->(a,b)))
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(3)
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MV
分離
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type TV a = (Out a, a)

type Out a = ...
put     :: Put a -> Out a
opair   :: Out a -> Out b -> Out (a, b)
olambda :: In  a -> Out b -> Out (a->b)

type In a = ...
get   :: Get a -> In a
ipair :: In  a -> In b -> In (a,b)
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•TypeCompose

•DeepArrow

•DataDriven

•Phooey

Eros

•TV

•GuiTV

•wxHaskell

•wxWidgets
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•Tangible polymorphism?

•Direct structural tweaks

•Symmetric In/Out (ilambda)

•“GUIs are types” as GUI design guide

•TVs as composable MVC

To explore
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