Concurrent Ruby
Application Servers

Agenda

- Who? (2)

- Concurrency? (10)
- What we have? (15)
- App servers? (15)
- Q? (3)

Who?

* Programmer at Cardinal Blue
* Use Ruby from 2006

* Interested in programming languages and
functional programming (e.g. Haskell)

* Programmer at Cardinal Blue
* Use Ruby from 2006

* Interested in programming languages and
functional programming (e.g. Haskell)

* Also concurrency recently

PicCollage

& iPhone & iPad [-IEGNCIEIIR

- PicCoLLAGE

the canvas for your life.

2-PicColLLAGE

Available on the
D App Store

ANDROID APP ON

Google play

Learn more...

PicCollage
In 7 days

* ~3.1Kk requests per minute

* Average response time: ~135 ms

* Average concurrent requests per process: ~7
* Total processes: 18

* Above data observed from NewRelic

* App server: Zbatery with EventMachine and
thread pool on Heroku Cedar stack

Recent gems

* jellyfish - Pico web framework for building
APIl-centric web applications

*rib - Ruby-Interactive-ruBy -- Yet another
Interactive Ruby shell

* rest-core - Modular Ruby clients interface for
REST APls

* rest-more - Various REST clients such as
Facebook and Twitter built with rest-core

Special Thanks

Ihower, ET Blue and Cardinal Blue

Concurrency?

Caveats:

*No disk 1/O

* No pipelined requests
* No chunked encoding
* No web sockets

*No ...

To make things simpler for now.

Caution: it's not faster for a user

10 moms can't produce
1 child in 1 month

10 moms can produce
10 children in 10 month

Resource matters

Resource matters

We might not always have
enough processors

Resource matters

We might not always have
enough processors

We need multitasking

Imagine 15 children have to be
context switched amongst 10
moms

Multitasking is not free

If your program context
switches, then actually it
runs slower

But it's more fair for users

It's more fair if they are all
served equally in terms of
waiting time

| just want a drink!

to illustrate the overall
running time:

User ID

sequential
ﬁgésl B waiting |
#03 B processing
#01 _ Time context switching
User ID
concurrent
%8451 B waiting
03 :
#02 ¥ processing

context switching

#01

User ID

sequential

running time

of server
#05]
#04 :
#03 :
#U2 :
#01 s 1ime

User ID
: : concurrent

#05 : :
#04 [I
#03 : ;
#UZ : :
#01 » Time

User ID

#0 Sequential
#04
#03
#02
® Waiting

#01
#00

® Processing

- Context Switchin
Time ’

User ID

#0 Sequential
#04
#03
#02
® Waiting
#01 ® Processing
#00 Context Switching

Time

User ID
#0 Concurrent
#04
#03
#02
® Waiting

#01
#00

@ Processing

= Context Switchin
Time ?

User ID

:34 Total Waiting and Sequentlal
Processing
#03 .
Time
#02
#01
e Time
Concurrent

Total Waiting and
Processing

Time

User ID

#0

#04
#03
#02
#01
#00

PTime

User ID

#0

#04
#03
#02
#01
#00

Scalable = Fast

Scalable = Fast

Scalable == Less complaining

Rails is not fast

Rails is not fast

Rails might be scalable

so when do we want
concurrency?

Ll_E FREEZE *o%*

When context switching
cost is much cheaper
than a single task

When context switching
cost is much cheaper
than a single task

or if you have much more cores than your
clients (= no context switching)

If context switching cost
Is at about 1 second

It's much cheaper than 10
months, so it might be
worth it

But if context switching
cost Is at about 5 months,
then it might not be worth

it

sequential

concurrent

Do kernel threads
context switch fast?

Do user threads
context switch fast?

Do fibers
context switch fast?

a ton of different
concurrency models then
iInvented

each of them has different
strengths to deal with
different tasks

also trade off, trading
with the ease of
programming and
efficiency

data dependency -- two
patterns of composite
tasks

- linear data dependency
- mixed data dependency

order

S

wait food wait drink
eat drink

order_food -> eat
order_tea -> drink

order

P

wait food wait spices

N .

mix

l

eat

[order food, order spices] -> add_spices -> eat

order

<.

wait food wait spices

order
wait food wait drink
eat drink

N .

mix

eat

two types of tasks:
CPU bound tasks
/O bound tasks

prepare to share a photo

prepare to merge photos

.

share to
facebook

share to
flickr

load from
facebook

load from
flickr

|

save result

l

save result

N .

merge photos

save result

CPU

prepare to share a photo CPU
share to shareto (10
facebook flickr

save result save resul

1O

prepare to merge photos

CPU

< .

load from load from
facebook flickr

10

N .

@ merge photos

l

save result

CPU

ofoo

what we have

we don't only talk about
performance, we also talk
about interface, since we
human write programs
the easy way, but not the
hard way

it would be good if the

interface we're using is
orthogonal to its
Implementation

there are two advantages
for this:

a) we don't have to
change our code if the
Implementation is
changed. (that said, we
can also switch
iImplementation to see
how they work differently)

b) we don't need to really

know the implementation

detail in order to use this
interface

linear data dependency

this is an easy one

Interface -- callback

order_food{ |[food|
eat(food)

}

order_tea{ [tea]
drink(tea)

J

this might be bad, blocking drink
while ordering food

eat(order_food)
drink(order_tea)

but what if we could control side-
effect and do static analysis?
not going to happen on ruby though

mixed data dependency

here comes the dragon

If the interface we only
have Is callbacks...

we don't want to do this:

order_food is blocking order_spices
order_food{ |food|
order_spices{ |spices|
eat(add_spices(spices, food))
}
}

we don't really want to do this either, but we have no
choices if what we only have is callback and we want
order_food and order_spices to run in a concurrent
way

food, spices = nil
order_food{ |arrived_food|
food = arrived_food
start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
spices = arrived_spices
start_eating(food, spices) if food && spices
}
H#
def start_eating food, spices
superfood = add_spices(spices, food)
eat(superfood)
end

ideally, we could do this with futures

food = order_ food

spices = order_spices

superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order _food))

but by how?

Implementation

forget about data
dependency for now, let's
focus on implementation
for a single task

basically we have two
main choices:

a) threads with
synchronous (blocking)
interface

this could be used for either CPU bound or
|O bound operations

b) reactor with
asynchronous (callback)
interface

this could only be used on I/O bound
operations, since it is a

if order_food is 1/0 bound

so It could be done in either a thread or with
a reactor

the implementation -- how we define
order food with a thread

def order food
Thread.new{
food = order _food_blocking
yield(food)
}

end

the implementation -- as for with a reactor...

def order_food
make request('order food'){ |food|
yield(food)
}

end

the impliementation -- now we aetine

order_food with a reactor
def order food

buf =[]
reactor = Thread.current[:reactor]
sock = TCPSocket.new(‘example.com’, 80)
request = "GET / HTTP/1.0\r\n\r\n"
reactor.write sock, request do
reactor.read sock do |response|
i ¢ https://github.com/godfat/ruby-
buf << response expiblobimaster/Sai PIE (RN
else
yield(buf.join)
ennnnd

if order food is CPU
bound

the implementation -- how we define
order food with a thread

def order food
Thread.new{
food = order _food_blocking
yield(food)
}

end

yes, exactly the same

how about reactor?

sorry, you can't do that
with a reactor.
use a thread instead.

CPU: thread
(sockets and pipes) I/O: reactor

disk 1/O: thread
see libev and libeio

back to mixed data
dependency

if we could have some
other interface than
callbacks...

we can do it with threads easily

food, spices = nil

t0 = Thread.new{ food = order_food }

t1 = Thread.new{ spices = order_spices }
t0.join

t1.join

superfood = add_spices(spices, food)
eat(superfood)

what if we still want
callbacks, since then we
can pick either threads or
reactors as the
iImplementation detail?

can we do better?

can we do better?
YES!

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
food = arrived_food
start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
spices = arrived_spices
start_eating(food, spices) if food && spices
}
H#
def start_eating food, spices
superfood = add_spices(spices, food)
eat(superfood)
end

we could use threads or

fibers to remove the need
for defining another

callback (i.e. start_eating)

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
food = arrived_food
start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
spices = arrived_spices
start_eating(food, spices) if food && spices
}
H#
def start_eating food, spices
superfood = add_spices(spices, food)
eat(superfood)
end

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
food = arrived_food

order_spices{ |arrived_spices|
spices = arrived_spices

}
it

superfood = add_spices(spices, food)
eat(superfood)

Turn threads callback back to synchronized like using join

condv = ConditionVariable.new

mutex = Mutex.new

food, spices = nil

order_food{ |arrived_food|
food = arrived_food
condyv.signal if food && spices

}

order_spices{ |arrived_spices|
spices = arrived_spices
condv.signal if food && spices

}

H#

mutex.synchronize{ condv.wait(mutex) }
superfood = add_spices(spices, food)
eat(superfood)

Turn reactor callback to synchronized style

fiber = Fiber.current

food, spices = nil

order_food{ |arrived_food|
food = arrived_food
fiber.resume if food && spices

}

order_spices{ |arrived_spices|
spices = arrived_spices
fiber.resume if food && spices

}

H#

Fiber.yield
superfood = add_spices(spices, food)
eat(superfood)

threads or fibers?

threads if your request is
wrapped inside a thread
(e.g. thread pool strategy)

fibers if your request is
wrapped inside a fiber (e.
g. reactor + fibers)

we're using eventmachine
+ thread pool with thread
synchronization

we used to run fibers, but
It didn't work well with
other libraries

e.g. activerecord's connection pool didn't
respect fibers, only threads

also, using fibers we're
running a risk where we
might block the event
loop somehow we don't
know

so using threads iIs easier
If you consider thread-
safety is easier than fiber-
safety + potential risk of
blocking the reactor

and we can even go one
step further...

...iInto the futures!

this is also a
demonstration that some
interfaces are only
available to some
Implementations

ideally, we could do this with futures

food = order_ food

spices = order_spices

superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order _food))

who got futures?

* rest-core for HT TP futures
* celluloid for general futures
* also check celluloid-io for
replacing eventmachine

http://en.wikipedia.org/wiki/Futures_and_promises
https://github.com/cardinalblue/rest-core
https://github.com/celluloid/celluloid

a more complex (real world) example: (picture)
* update friend list from facebook

* get photo list from facebook

* download 3 photos from the list

* detect the dimension of the 3 photos

* merge above photos

* upload to facebook

this example shows a mix model of type Fork
and type Diamond

and how do we do that in a web application?
we'll need to do the above example in a
concurrent way. i.e. (last picture * 3)

application servers

Again: we don't talk about
chunked encoding and web

sockets or so for now; simply
plain old HTTP 1.0

two types of concurrency

client client client

/bufferng requests, 1/0 bound

\

http server (reverse proxy or load
balancer)

take Nginx for the example

/ AN

buffering responses, 1/0 bound
processing requests, application dependant,
might be /0O bound might be CPU bound
app app app : -
e e — cerver and might have mixed form

sockets I/O bound tasks
would be ideal for an
event loop to process
them efficiently

nginx, eventmachine, libev, nodejs, etc.

however, CPU bound
tasks should be handled
in real hardware core (e.g.

kernel process/thread)

unicorn uses pre-forked workers, thin uses
clusters (launch multiple processes), puma
uses threads; while rainbows could do
anything above and more. you can even use
zbatery to avoid forking (such as saving
memory, or make it work more like puma)

we can abstract the http
server (reverse proxy)
easily, since It only needs
to do one thing and do it
well (unix philosophy)

that is, using an event loop to buffer the
requests

however, different
application does different
things, one strategy
might work well for one
application but not the
other

we could have an
universal concurrency
model which could do
averagely good, but not
perfect for say, *your*
application

that is why rainbows

provides all possible
concurrency models for

you to choose from

what if we want to make
external requests to
outside world? (e.g.
facebook)

it's I/0O bound, and could be the most
significant bottleneck, much slower than your
favorite database

before we jump into the
detail...

let's see some concurrent popular ruby
application servers

thin, puma, unicorn family

client client client

/bufferng requests, 1/0 bound

\

http server (reverse proxy or load
balancer)

take Nginx for the example

/ AN

buffering responses, 1/0 bound
processing requests, application dependant,
might be /0O bound might be CPU bound
app app app : -
e e — cerver and might have mixed form

default thin:
eventmachine (event
loop) for buffering
requests; no application
concurrency

you can run thin cluster for application
concurrency

ll%HHIl ll%HHIl IIHHHHI

buffering requests, I/O bound

N

http server (reverse proxy or load
balancer)

take Nginx for the example

[/

¥

ANAN

buffering responses, 1/0 bound

eventmacl;/ry,/
]

app
server

eventmachine
\ eventmachine
app app
server server

thin

threaded thin:
eventmachine (event
loop) for buffering
requests; thread pool to
serve requests

you can of course run cluster for this

buffering requests, I/O bound

N v

http server (reverse proxy or load
balancer)

take Nginx for the example

// ANAN

buffering responses, 1/0 bound

threaded thin

eventmachine
eventmac .
‘ \ eventmachine

app app app
server server server

puma: thread pool

zbatery + ThreadPool = puma

client client client

\ buffering requests, 1/0 bound

http server (reverse proxy or load
balancer)

take Nginx for the example

// ANAN

buffering responses, 1/0 bound

puma -- threads

app app
server server

app
server

unicorn: no network

concurrency; worker

process application
concurrency

client client client

\ buffering requests, 1/0 bound

http server (reverse proxy or load
balancer)

take Nginx for the example

// ANAN

buffering responses, 1/0 bound

unicorn -- forked
app app processes

server server

app
server

rainbows: another
concurrency model +
unicorn

zbatery: rainbows with
single unicorn (no fork)

saving memories

zbatery + EventMachine =
default thin

rainbows + eventmachine = cluster default
thin

zbatery + EventMachine +
TryDefer (thread pool) =
threaded thin

each model has its
strength to deal with
different task

remember? threads for
cpu operations, reactor
for i/o operations

what if we want to resize
Images, encode videos?

it's of course CPU bound, and should be
handled in a real core/CPU

what if we want to do

both? what if we first

request facebook, and

then encode video, or
vice versa?

or we need to request facebook and encode
videos and request facebook again?

the reactor could be used
for http concurrency and
also making external
requests

USE EVERYTHING

ultimate solution

for what i can think of right now

rainbows + eventmachine
+ thread pool + futures!

http server (reverse proxy or load
balancer)

take Nginx for the example

and how do we do that in a web application?
we'll need to do the above example in a
concurrent way. i.e. (last picture * 3)

application

N/A

thread pool

thread pool

worker
processes

process pool

process/tiread
Ir_\nnl

network interface
thin (default) eventmachine
thin (threaded) eventmachine
puma
unicorn N/A
Rack
: worker processes +
rainbows)
depends on configura
zbatery depends on configure
I/O threads
passenger
nginx SCGI? || libev + libeio
goliath eventmachine wrapped rack

async 1/O

conclusion: your choice

are u sure what your
application will do?

are ur colleagues sure?

is ur boss sure?

srly?

will computation time be
short?

do u have extraordinary
coding skills?

v

do u need a lot of IO
bound operations?

You don't really
need a concurrent
app server. Unicorn

+ Nginx would work
fine

do u need "diamond
type" operations?

you need concurrent app
servers - pure event-
driven (CEER?).
supported by:

1.Thin

2.Rainbows

3.Zbattery (for Heroku)

you need concurrent app
servers - [42] event-
driven (CEER?) + thread
pool.

supported by:

1.Thin

2.Rainbows

3.Zbattery (for Heroku)

you need concurrent app
servers - event-driven
(CEER?) + fiber.
supported by (but need
some adjustments):
1.Thin

2.Rainbows

3.Zbattery (for Heroku)

Q?

EXTRA

some free talk

Reinvent the wheel,
not the car

fdata = RC::Facebook.new.get('me’)

tdata = RC:: Twitter.new.get('me")

tO = Thread.new{ merge photos fdata, tdata }

t1 = Thread.new{ mix_photos fdata, tdata }

t0.join; t1.join

merge_final_photo

Thread.new{ do_some_fancy_stuffs }
RC::Facebook.new.post('me’, final) # non-blocking
RC:: Twitter.new.post('me’, final).tap{} # blocking

network concurrency VS
application concurrency

network concurrency = buffering client request
nginx could do this well

we need reactor pattern, event loop, or
whatever you call it

it's a full /O issue

application concurrency = do the real business

might be |1/O bound or CPU bound, it depends
on your business. they are two different things

default thin server = event loop network
concurrency + no application concurrency

threaded thin server = event loop network
concurrency + threaded application
concurrency

if you have nginx in front, then there's no much
point for an event loop, or is there?

do you make external network request?

If so, then it matters. if not, then it doesn't
matter

ruby people, please learn about threads

don't easily trust the hype

be conscious

trust the old good things

threads are old...

it's not that hard

threads are hard, if you don't try to understand it

cores are growing, threads would be more and
more important in the future. threading is not
simply a technique, it's a concept... which we have
to overcome in the end, don't be afraid of it

thin = zbatery + eventmachine
thin clusters = rainbows + eventmachine
puma = zbatery + thread pool

bonus content? not sure
If | would have time to talk
about this, since it would

be the toughest content

application concurrency

(B LE—RMEPIEYESE 1/0 &
CPU)

sequential concurrent sequential concurrent

Total Waiting and Total Waiting and
Processing Time Processing Time

P rocessing P rocessing
0123456789 : : 0123456789
(client) switching
i) AAMMAA less overall time time
AN [ess ovelfhll time VR .
AAAAA . more overall time
more overall time

Waiting and Waiting and
processing Time processing Time

.. = N A

child (cllent)
|d

child (client)
id

child (client) child (client)
id id

|] n
context i _I _I
switching i 0

(= FART&fE A #(1))

(E—

i

——

H

% ?#H#FEﬁ,)

*EJ

Eﬁ'ﬁ’““j()

X: {E Rl client
Y: F{FHFMHE]

1T concurrency LLZ[E]F

(= FART&fE F#(2))

([E
Ix, |

—H¥E ST R

T concurrency EiE 8

FElE]*_%E’]TL”f'E)
X: BFfd]
Y: {El Bl client

5 — (&

.%’E‘] request Y B
& R R IR

B

(AT LLFH Concurrency FREERIRSIREIEEY,
Data Dependency)

(Bl—, XF& - FFMEATRRIKREHER, &E
AL, FEEIRITLIEEEIE (food + drink), {223
1 [E) B 0 = B8 /7 2I|FBER Twitter)

"

(B=, A% MERREMEMNENFERT FEEEE
IEﬂ(food + spices), 22 INFBERFlickrBIBB KR &
X —akCollage)

fork shaped

tasks (eat, drink) depend on independent tasks
(order_food, order _tea)

this is ideal for parallels computing (if we're not
enforcing task resolution ordering), and it is
quite easy to solve for whatever methods

order_food -> eat
order_tea -> drink

diamond shaped

task (add_spices) depends on multiple
Independent tasks (order _food, order_spices)

[order _food, order_spices] -> add_spices -> eat

If we're not using concurrency, all clients would
need to wait for a different period of time, and
some unfortunate users might need to wait for
a long long time, since (s)he needs to wait for
all the preceding users had done their requests.

we don't want that, we want all users wait for
the same time, eliminate unfortunate users,
making our program "fair". 23 1E &

but making our program run concurrently,
would actually make our program run slower, in

terms of overall processing time. that's the
trade of A FIEZE. N FIEEMBUFRELERE

Why Concurrency

(f#FE concurrency BB R EE WA HZEREIHE
RESE HRMEEEE REMaLEGE

(EESHALY

%‘%tﬂﬁ’]'lﬁﬁu."ﬁ)

(Fﬁu EI’J'||EJ/RJE ¥£FH concurrency, {1B..B91F %

LA S concurrency)

(BET R RS code : BRI EMA)
1. synchronized |/O + thread
2. asynchronized /O + callback

3. asynchronized I/O + callback + thread
(coroutine)

synchronized CPU - {kF#1T
asynchronized CPU - threads &&iii 01T

synchronized 1/0O - ik
asynchronized 1/O -

a simple reactor

class Reactor
def run
until read_socks.empty? &&
write_socks.empty?
rs, ws = |O.select(read_socks, write socks,
[], 0.05)

read_data(rs) if rs
write _data(ws) if ws

ennnd

a simple reactor

class Reactor
def read sock, &callback
read_socks << sock
read_calls[sock.object id] = callback
end
def write sock, data, &callback
write _socks << sock
write pairs[sock.object id] = [data, callback]
ennd

a simple reactor

class Reactor
def read datars
rs.each do |r]|
begin
read calls[r.object _id].call(r.read nonblock(81!
rescue Errno::EAGAIN, ::10O::WaitReadable
rescue Errno::ECONNRESET, EOFError
read_socks.delete(r)
ennnd

a simple reactor

class Reactor
def write _data ws
ws.each do |w|

data, callback = write _pairs[w.object id]

begin
data.slice!(0, w.write_nonblock(data))
raise EOFError if data.empty?

rescue ::10::WaitWritable

rescue EOFError
write pairs.delete(w.object _id)
write_socks.delete(w)

~rallhacle ~alliar\

It doesn’'t seem to be a
good pattern

but it's so ugly and tedious!
what if we want 42 kinds of different spices?

yes, yes, | know nodejs guys have some
solution for this, but why invent a new method
while the old good synchronous programming
does do the job elegantly”? you can also
consider that as a DSL for synchronous
programming

let's see how to make your code synchronous

there are two approaches, depending on the
architecture, you can use either threads or
fibers to do that.

but note that fibers only work in an event loop
(or say single threaded asynchronous
programming)

still looks ugly? we can go further with futures.

It can make your code exactly the same as
synchronous one, but actually running
asynchronous underneath.

(B ERIFRY)

using rest-core to make concurrent requests
with futures

maybe try to use celluloid to implement futures
In the futures? that way, we can have a more
consistent way to deal with either 1/O or CPU
bound operations.

| shouldn't create my own futures -- there's no
futures for me (?)

implementation M

