
Concurrent Ruby
Application Servers

Agenda

- Who? (2)
- Concurrency? (10)
- What we have? (15)
- App servers? (15)

- Q? (3)

Who?

* Programmer at Cardinal Blue
* Use Ruby from 2006
* Interested in programming languages and
functional programming (e.g. Haskell)

* Programmer at Cardinal Blue
* Use Ruby from 2006
* Interested in programming languages and
functional programming (e.g. Haskell)
* Also concurrency recently

PicCollage

* ~3.1k requests per minute
* Average response time: ~135 ms
* Average concurrent requests per process: ~7
* Total processes: 18
* Above data observed from NewRelic
* App server: Zbatery with EventMachine and
thread pool on Heroku Cedar stack

PicCollage
in 7 days

* jellyfish - Pico web framework for building
API-centric web applications

* rib - Ruby-Interactive-ruBy -- Yet another
interactive Ruby shell

* rest-core - Modular Ruby clients interface for
REST APIs

* rest-more - Various REST clients such as
Facebook and Twitter built with rest-core

Recent gems

ihower, ET Blue and Cardinal Blue

Special Thanks

Concurrency?

Caveats: There are a ton
of details which would

make exceptions to what
I am going to say, and

given that I am still quite
new in this area and
since I don't want to
make this talk sound
quite complicated or

chaotic, all conclusions
are overly simplified. So
please keep in mind that
everything I said might
not be perfectly true.

For example, when I am talking
about I/O operations, heavy disk
I/O operations are excluded. When
I am talking about HTTP requests,
pipelined requests, chunked
encoding and web sockets are all
excluded. Those are the exceptions
we'll need to address separately.

 I/O operations
disk I/Onetwork

I/O

HTTP requests
pipelined requests web socketschunked encoding

Caveats:

* No disk I/O
* No pipelined requests
* No chunked encoding
* No web sockets
* No ...

To make things simpler for now.

Caution: it's not faster for a user

10 moms can't produce
1 child in 1 month

10 moms can produce
10 children in 10 month

that said, we cannot speed up

in a perfect world, we
might have a process for
each task. in reality, we
don't have that much
money (or resource on
the earth)

(assuming you have
much more clients than
cores)

Resource matters

in a perfect world, we
might have a process for
each task. in reality, we
don't have that much
money (or resource on
the earth)

(assuming you have
much more clients than
cores)

Resource matters

We might not always have
enough processors

in a perfect world, we
might have a process for
each task. in reality, we
don't have that much
money (or resource on
the earth)

(assuming you have
much more clients than
cores)

Resource matters

We might not always have
enough processors

We need multitasking

Imagine 15 children have to be
context switched amongst 10
moms

Multitasking is not free

If your program context
switches, then actually it

runs slower

But it's more fair for users

[Image for a long long
long line up]

It's more fair if they are all
served equally in terms of

waiting time

[Image for someone
buying a lot of things]

I just want a drink!

to illustrate the overall
running time:

sequential

concurrent

#01
#02
#03
#04
#05

#01
#02
#03
#04
#05

waiting
processing
context switchingTime

Time

User ID

User ID

waiting
processing
context switching

sequential

concurrent

#01
#02
#03
#04
#05

#01
#02
#03
#04
#05

Time

Time

User ID

User ID

waiting and processing time
of users

running time
of server

cpu bound operation,
one thread (mom)

Scalable != Fast

Scalable != Fast

Scalable == Less complaining

Rails is not fast

Rails is not fast

Rails might be scalable

so when do we want
concurrency?

以上 FREEZE *o*

When context switching
cost is much cheaper
than a single task

or if you have much more cores than your
clients (= no context switching)

When context switching
cost is much cheaper
than a single task

If context switching cost
is at about 1 second

It's much cheaper than 10
months, so it might be

worth it

But if context switching
cost is at about 5 months,
then it might not be worth

it

sequential

concurrent

#01
#02
#03
#04
#05

#01
#02
#03
#04
#05

Do kernel threads
context switch fast?

Do user threads
context switch fast?

Do fibers.............
context switch fast?

a ton of different
concurrency models then

invented

each of them has different
strengths to deal with

different tasks

also trade off, trading
with the ease of

programming and
efficiency

data dependency -- two
patterns of composite

tasks

- linear data dependency
- mixed data dependency

order

wait food wait drink

eat drink

order_food -> eat
order_tea -> drink

order

wait food wait spices

eat

mix

[order_food, order_spices] -> add_spices -> eat

order

wait food wait drink

eat drink

order

wait food wait spices

eat

mix

two types of tasks:
CPU bound tasks
I/O bound tasks

prepare to share a photo

share to
facebook

share to
flickr

save result save result

prepare to merge photos

load from
facebook

load from
flickr

save result

merge photos

prepare to share a photo

share to
facebook

share to
flickr

save result save result

prepare to merge photos

load from
facebook

load from
flickr

save result

merge photos

CPU

IOIO

CPUCPU

CPU

IOIO

CPUCPU

CPU

what we have

we don't only talk about
performance, we also talk
about interface, since we

human write programs
the easy way, but not the

hard way

it would be good if the
interface we're using is

orthogonal to its
implementation

there are two advantages
for this:

a) we don't have to
change our code if the

implementation is
changed. (that said, we

can also switch
implementation to see

how they work differently)

b) we don't need to really
know the implementation
detail in order to use this

interface

this is an easy one

linear data dependency

interface -- callback

order_food{ |food|
 eat(food)
}
order_tea{ |tea|
 drink(tea)
}

this might be bad, blocking drink
while ordering food

eat(order_food)
drink(order_tea)

it is possible to address this
blocking issue by doing some
static analysis, and then we
would know that drink
(order_tea) doesn't depend on
eat(order_food), that is we
can make sure that eat
(order_food) won't introduce
any side-effect, like changing
satisfaction points which drink
(order_tea) might be
depending on (or the random
seed, to name a few concrete
examples), so on so forth.

then we could make those
operations run in parallels. but
it would be hard even in a
static typing program, not
even to mention ruby which is
so dynamic, that we cannot
know a lot of thing unless we
really run it, since that's the
nature of dynamic programs.

so -- we cannot have this
perfect interface for now,
except... umm... in haskell,
probably, which we need to
control every single side-
effect, so we might be able to
tell whether they are
dependant or not. but i
believe even in haskell, this
cannot be easily done either.
let's see if we can reach that
point given another decade.

callbacks are still ideal here
since it forces you to explicitly
telling the dependency,
then the program could know
they could be run in a
concurrent way.

but what if we could control side-
effect and do static analysis?
not going to happen on ruby though

here comes the dragon

mixed data dependency

if the interface we only
have is callbacks...

order_food is blocking order_spices
order_food{ |food|
 order_spices{ |spices|
 eat(add_spices(spices, food))
 }
}

we don't want to do this:

we don't really want to do this either, but we have no
choices if what we only have is callback and we want
order_food and order_spices to run in a concurrent
way

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

ideally, we could do this with futures

food = order_food
spices = order_spices
superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order_food))

but by how?

implementation

forget about data
dependency for now, let's
focus on implementation

for a single task

basically we have two
main choices:

this could be used for either CPU bound or
IO bound operations

a) threads with
synchronous (blocking)

interface

this could only be used on I/O bound
operations, since it is a

b) reactor with
asynchronous (callback)

interface

so it could be done in either a thread or with
a reactor

if order_food is I/O bound

the implementation -- how we define
order_food with a thread

def order_food
 Thread.new{
 food = order_food_blocking
 yield(food)
 }
end

the implementation -- as for with a reactor...

def order_food
 make_request('order_food'){ |food|
 yield(food)
 }
end

i know this looks
stupid, but the actual
implementation is
quite dependant on
which reactor we
would want to use, so
i omit them here;
while we have
universal threading
interface.... threads
were invented much
more earlier, we have
more agreements on
it

def order_food
 buf = []
 reactor = Thread.current[:reactor]
 sock = TCPSocket.new('example.com', 80)
 request = "GET / HTTP/1.0\r\n\r\n"
 reactor.write sock, request do
 reactor.read sock do |response|
 if response
 buf << response
 else
 yield(buf.join)
ennnnd

the implementation -- how we define
order_food with a reactor

https://github.com/godfat/ruby-
server-
exp/blob/master/sample/reactor.rb

if order_food is CPU
bound

the implementation -- how we define
order_food with a thread

def order_food
 Thread.new{
 food = order_food_blocking
 yield(food)
 }
end

how about reactor?

yes, exactly the same

sorry, you can't do that
with a reactor.

use a thread instead.

disk I/O: thread
see libev and libeio

CPU: thread
(sockets and pipes) I/O: reactor

back to mixed data
dependency

if we could have some
other interface than

callbacks...

we can do it with threads easily

food, spices = nil
t0 = Thread.new{ food = order_food }
t1 = Thread.new{ spices = order_spices }
t0.join
t1.join
superfood = add_spices(spices, food)
eat(superfood)

what if we still want
callbacks, since then we

can pick either threads or
reactors as the

implementation detail?

can we do better?

YES!

can we do better?

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

we could use threads or
fibers to remove the need

for defining another
callback (i.e. start_eating)

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

instead of writing this...

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

Turn threads callback back to synchronized like using join

condv = ConditionVariable.new
mutex = Mutex.new
food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 condv.signal if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 condv.signal if food && spices
}
##
mutex.synchronize{ condv.wait(mutex) }
 superfood = add_spices(spices, food)
 eat(superfood)

Turn reactor callback to synchronized style

fiber = Fiber.current

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 fiber.resume if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 fiber.resume if food && spices
}
##
Fiber.yield
 superfood = add_spices(spices, food)
 eat(superfood)

threads or fibers?

threads if your request is
wrapped inside a thread

(e.g. thread pool strategy)

fibers if your request is
wrapped inside a fiber (e.

g. reactor + fibers)

we're using eventmachine
+ thread pool with thread

synchronization

e.g. activerecord's connection pool didn't
respect fibers, only threads

we used to run fibers, but
it didn't work well with

other libraries

also, using fibers we're
running a risk where we

might block the event
loop somehow we don't

know

so using threads is easier
if you consider thread-

safety is easier than fiber-
safety + potential risk of

blocking the reactor

and we can even go one
step further...

...into the futures!

this is also a
demonstration that some

interfaces are only
available to some
implementations

ideally, we could do this with futures

food = order_food
spices = order_spices
superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order_food))

but the detail is beyond this talk,
so i won't talk about the detail

here. you can see rest-core which
supports this out-of-the-box if

you're interested, or you can also
check celluloid which i haven't
checked in much detail but i

believe they are sharing some
concepts, and i might try to use it

to implement rest-core some other
days

who got futures?

http://en.wikipedia.org/wiki/Futures_and_promises
https://github.com/cardinalblue/rest-core
https://github.com/celluloid/celluloid

* rest-core for HTTP futures
* celluloid for general futures
* also check celluloid-io for
replacing eventmachine

a more complex (real world) example: (picture)
* update friend list from facebook
* get photo list from facebook
* download 3 photos from the list
* detect the dimension of the 3 photos
* merge above photos
* upload to facebook
this example shows a mix model of type Fork
and type Diamond

and how do we do that in a web application?
we'll need to do the above example in a
concurrent way. i.e. (last picture * 3)

application servers

Again: we don't talk about
chunked encoding and web
sockets or so for now; simply
plain old HTTP 1.0

- network concurrency
- application concurrency

two types of concurrency

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

processing requests, application dependant,
might be I/O bound might be CPU bound
and might have mixed form

nginx, eventmachine, libev, nodejs, etc.

sockets I/O bound tasks
would be ideal for an
event loop to process

them efficiently

unicorn uses pre-forked workers, thin uses
clusters (launch multiple processes), puma

uses threads; while rainbows could do
anything above and more. you can even use

zbatery to avoid forking (such as saving
memory, or make it work more like puma)

however, CPU bound
tasks should be handled

in real hardware core (e.g.
kernel process/thread)

that is, using an event loop to buffer the
requests

we can abstract the http
server (reverse proxy)

easily, since it only needs
to do one thing and do it

well (unix philosophy)

however, different
application does different

things, one strategy
might work well for one
application but not the

other

we could have an
universal concurrency
model which could do

averagely good, but not
perfect for say, *your*

application

that is why rainbows
provides all possible

concurrency models for
you to choose from

it's I/O bound, and could be the most
significant bottleneck, much slower than your

favorite database

what if we want to make
external requests to
outside world? (e.g.

facebook)

let's see some concurrent popular ruby
application servers

before we jump into the
detail...

thin, puma, unicorn family

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

processing requests, application dependant,
might be I/O bound might be CPU bound
and might have mixed form

you can run thin cluster for application
concurrency

default thin:
eventmachine (event

loop) for buffering
requests; no application

concurrency

eventmachineeventmachine

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

thineventmachine

you can of course run cluster for this

threaded thin:
eventmachine (event

loop) for buffering
requests; thread pool to

serve requests

eventmachineeventmachine

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

threaded thineventmachine

app
serverapp

server

app
serverapp

server

app
serverapp

server

zbatery + ThreadPool = puma

puma: thread pool

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

app
server

app
server

app
serverapp

server
app
server

app
server

puma -- threads

unicorn: no network
concurrency; worker
process application

concurrency

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

Unicron doesn't have
any I/O concurrency,
relying on Nginx to
buffer the requests.
Unicorn has workers
(processes)
concurrency, dealing
with CPU bound
tasks

app
server

app
server

app
serverapp

server
app
server

app
server

unicorn -- forked
processes

rainbows: another
concurrency model +

unicorn

saving memories

zbatery: rainbows with
single unicorn (no fork)

rainbows + eventmachine = cluster default
thin

zbatery + EventMachine =
default thin

zbatery + EventMachine +
TryDefer (thread pool) =

threaded thin

each model has its
strength to deal with

different task

remember? threads for
cpu operations, reactor

for i/o operations

it's of course CPU bound, and should be
handled in a real core/CPU

what if we want to resize
images, encode videos?

or we need to request facebook and encode
videos and request facebook again?

what if we want to do
both? what if we first

request facebook, and
then encode video, or

vice versa?

the reactor could be used
for http concurrency and

also making external
requests

USE EVERYTHING

for what i can think of right now

ultimate solution

rainbows + eventmachine
+ thread pool + futures!

client client client

http server (reverse proxy or load
balancer)

take Nginx for the example

app
server

app
server

app
server

buffering requests, I/O bound

buffering responses, I/O bound

Unicron doesn't have
any I/O concurrency,
relying on Nginx to
buffer the requests.
Unicorn has workers
(processes)
concurrency, dealing
with CPU bound
tasks

app
server

app
server

app
serverapp

server
app
server

app
server

unicorn -- forked
processes

and how do we do that in a web application?
we'll need to do the above example in a
concurrent way. i.e. (last picture * 3)

eventmachinethin (default)

network application

thin (threaded) eventmachine thread pool

puma thread pool

unicorn worker
processes

N/A

N/A

rainbows worker processes +
depends on configurations

zbatery

zbatery

unicorn

rainbows unicorn (no
fork)

based on other architecture

depends on configurations

interface

Rack

passenger I/O threads process pool

SCGI?

goliath eventmachine wrapped rack async I/O

libev + libeio process/thread
poolnginx

conclusion: your choice

are u sure what your
application will do?

you need concurrent app
servers - [42] event-
driven (CEER?) + thread
pool.
supported by:
1.Thin
2.Rainbows
3.Zbattery (for Heroku)

No

are ur colleagues sure?

is ur boss sure?

srly?

Yes

Yes

Yes

No

No

No

will computation time be
short?

Yes

Yes
No

do u have extraordinary
coding skills?

do u need a lot of IO
bound operations?

do u need "diamond
type" operations?

You don't really
need a concurrent
app server. Unicorn
+ Nginx would work
fine

No

No

Yes

Yes

you need concurrent app
servers - event-driven
(CEER?) + fiber.
supported by (but need
some adjustments):
1.Thin
2.Rainbows
3.Zbattery (for Heroku)

Yes

you need concurrent app
servers - pure event-
driven (CEER?).
supported by:
1.Thin
2.Rainbows
3.Zbattery (for Heroku)

No

Q?

some free talk

EXTRA

Reinvent the wheel,
not the car

fdata = RC::Facebook.new.get('me')
tdata = RC::Twitter.new.get('me')
t0 = Thread.new{ merge_photos fdata, tdata }
t1 = Thread.new{ mix_photos fdata, tdata }
t0.join; t1.join
merge_final_photo
Thread.new{ do_some_fancy_stuffs }
RC::Facebook.new.post('me', final) # non-blocking
RC::Twitter.new.post('me', final).tap{} # blocking

network concurrency VS
application concurrency

network concurrency = buffering client request
nginx could do this well
we need reactor pattern, event loop, or
whatever you call it
it's a full I/O issue

application concurrency = do the real business
might be I/O bound or CPU bound, it depends
on your business. they are two different things

default thin server = event loop network
concurrency + no application concurrency

threaded thin server = event loop network
concurrency + threaded application
concurrency

if you have nginx in front, then there's no much
point for an event loop, or is there?
do you make external network request?
if so, then it matters. if not, then it doesn't
matter

ruby people, please learn about threads
don't easily trust the hype
be conscious
trust the old good things
threads are old...
it's not that hard
threads are hard, if you don't try to understand it
cores are growing, threads would be more and
more important in the future. threading is not
simply a technique, it's a concept... which we have
to overcome in the end, don't be afraid of it

thin = zbatery + eventmachine
thin clusters = rainbows + eventmachine
puma = zbatery + thread pool

bonus content? not sure
if i would have time to talk
about this, since it would
be the toughest content

application concurrency

（把上一張的圖中的食物替換回 I/O &

CPU）

^^^^^ less overall time
^^^^^ more overall time

child
(client)
id

child
(client)
id

^^^^^ less overall time
^^^^^ more overall time

context
switching
time

considering one mom (thread/process)

^^^^^ less overall time ^^^^^ more overall time

considering one mom (thread/process)

Waiting and
processing Time

child (client)
id0 1 2 3 4 5

Waiting and
processing Time

child (client)
id0 1 2 3 4 5

Total Waiting
and
Processing Time

Total Waiting
and
Processing Time

sequential concurrent

^^^^^ less overall time ^^^^^ more overall time

considering one mom (thread/process)

Time

child (client)
id

processing
Time

child (client)
id

5
4
3
2
1
0

sequential concurrent

5
4
3
2
1
0

context switching time

waiting

processing

context
switching

（使用前&使用後(1)）

（圖一：總等待時間，用了 concurrency 以後圖中
的面積反而會變大）
X: 個別 client

Y: 等待時間

（使用前&使用後(2)）

（圖二：甘特圖，執行不同使用者的 request 的時
候，用了 concurrency 會讓單一使用者的處理時
間變的不連續）
X: 時間

Y: 個別client

（可以用 Concurrency 處理的問題類型，

Data Dependency）

（圖一，叉子型：等待兩個不同來源的資料，各自
獨立，先到的就先處理 (food + drink)，像是用手
機同時分享照片到FB跟Twitter）

（圖二，鑽石型：兩個來源的資料都等到了才能處
理(food + spices)，像是抓FB跟Flickr的照片來合
成一張Collage）

tasks (eat, drink) depend on independent tasks
(order_food, order_tea)

this is ideal for parallels computing (if we're not
enforcing task resolution ordering), and it is
quite easy to solve for whatever methods

order_food -> eat
order_tea -> drink

fork shaped

task (add_spices) depends on multiple
independent tasks (order_food, order_spices)

[order_food, order_spices] -> add_spices -> eat

diamond shaped

if we're not using concurrency, all clients would
need to wait for a different period of time, and
some unfortunate users might need to wait for
a long long time, since (s)he needs to wait for
all the preceding users had done their requests.

we don't want that, we want all users wait for
the same time, eliminate unfortunate users,
making our program "fair". 公平正義

but making our program run concurrently,
would actually make our program run slower, in
terms of overall processing time. that's the
trade of 公平正義. 公平正義的政府效率比較差

Why Concurrency

（解釋 concurrency 這個東西其實並不會讓處理
速度變快，相反的還會變慢，只是他可以避免某
個特定使用者等超久的情況出現。）
（所以...的情況適合採用 concurrency，但...的情況
就不適合 concurrency）

（接下來幾張秀code：鑽石型的實做方式）
1. synchronized I/O + thread
2. asynchronized I/O + callback
3. asynchronized I/O + callback + thread
(coroutine)

synchronized CPU - 依序執行

asynchronized CPU - threads 輪流執行

synchronized I/O - 依序

asynchronized I/O -

class Reactor
 def run

until read_socks.empty? &&
 write_socks.empty?
 rs, ws = IO.select(read_socks, write_socks,
 [], 0.05)
 read_data(rs) if rs
 write_data(ws) if ws
ennnd

a simple reactor

class Reactor
 def read sock, &callback

read_socks << sock
read_calls[sock.object_id] = callback

 end
 def write sock, data, &callback

write_socks << sock
write_pairs[sock.object_id] = [data, callback]

 ennd

a simple reactor

class Reactor
 def read_data rs

rs.each do |r|
 begin
 read_calls[r.object_id].call(r.read_nonblock(8192))
 rescue Errno::EAGAIN, ::IO::WaitReadable
 rescue Errno::ECONNRESET, EOFError
 read_socks.delete(r)
ennnd

a simple reactor

class Reactor
 def write_data ws

ws.each do |w|
 data, callback = write_pairs[w.object_id]
 begin
 data.slice!(0, w.write_nonblock(data))
 raise EOFError if data.empty?
 rescue ::IO::WaitWritable
 rescue EOFError
 write_pairs.delete(w.object_id)
 write_socks.delete(w)
 callback.call(w)
ennnd

a simple reactor

it doesn't seem to be a
good pattern

but it's so ugly and tedious!
what if we want 42 kinds of different spices?

yes, yes, i know nodejs guys have some
solution for this, but why invent a new method
while the old good synchronous programming
does do the job elegantly? you can also
consider that as a DSL for synchronous
programming

let's see how to make your code synchronous
there are two approaches, depending on the
architecture, you can use either threads or
fibers to do that.

but note that fibers only work in an event loop
(or say single threaded asynchronous
programming)

still looks ugly? we can go further with futures.

it can make your code exactly the same as
synchronous one, but actually running
asynchronous underneath.

（賣藥時間）

using rest-core to make concurrent requests
with futures

maybe try to use celluloid to implement futures
in the futures? that way, we can have a more
consistent way to deal with either I/O or CPU
bound operations.

i shouldn't create my own futures -- there's no
futures for me (?)

confused?

O O

X O

asynchronizedsynchronized

thread

reactor

Oreactor + fiber

implementation
interface

X

Oreactor + fiber O+futures

