
Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

Concurrent

Ruby
Application Servers

http://godfat.org
http://rubyconf.tw/2012

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

http://godfat.org/slide/
2012-12-07-concurrent.pdf

http://godfat.org
http://rubyconf.tw/2012
http://godfat.org/slide/2012-12-07-concurrent.pdf
http://godfat.org/slide/2012-12-07-concurrent.pdf

Concurrency?

What We Have?

App Servers?

Me?

Q?

Concurrency?

What We Have?

App Servers?

Me?

Q?

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

http://godfat.org
http://rubyconf.tw/2012
http://cardinalblue.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

• Use Ruby from 2006

http://godfat.org
http://rubyconf.tw/2012
http://cardinalblue.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

• Use Ruby from 2006

• Interested in PL and FP (e.g. Haskell)

http://godfat.org
http://rubyconf.tw/2012
http://cardinalblue.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

• Use Ruby from 2006

• Interested in PL and FP (e.g. Haskell)Also concurrency recently

http://godfat.org
http://rubyconf.tw/2012
http://cardinalblue.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

• Use Ruby from 2006

• Interested in PL and FP (e.g. Haskell)

• https://github.com/godfat

Also concurrency recently

http://godfat.org
http://rubyconf.tw/2012
https://github.com/godfat

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

• Programmer at Cardinal Blue

• Use Ruby from 2006

• Interested in PL and FP (e.g. Haskell)

• https://github.com/godfat

• https://twitter.com/godfat

Also concurrency recently

http://godfat.org
http://rubyconf.tw/2012
https://github.com/godfat
https://twitter.com/godfat

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

PicCollage

http://godfat.org
http://rubyconf.tw/2012
http://pic-collage.com
http://pic-collage.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

in 7 days

• ~3.1k requests per minute

• Average response time:
~135 ms

• Average concurrent
requests per process: ~7

• Total processes: 18

• Above data observed from
NewRelic

• App server: Zbatery with
EventMachine and thread
pool on Heroku Cedar
stack

PicCollage

http://godfat.org
http://rubyconf.tw/2012
http://pic-collage.com

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

Recent Gems

• jellyfish - Pico web
framework for building
API-centric web
applications

• rib - Ruby-Interactive-
ruBy -- Yet another
interactive Ruby shell

• rest-core - Modular Ruby
clients interface for REST
APIs

• rest-more - Various REST
clients such as Facebook
and Twitter built with
rest-core

http://godfat.org
http://rubyconf.tw/2012
https://github.com/godfat/jellyfish
https://github.com/godfat/rib
https://github.com/cardinalblue/rest-core
https://github.com/cardinalblue/rest-more

Lin Jen-Shin (godfat) @ Rubyconf.tw/2012

Special Thanks
ihower, ET Blue and Cardinal Blue

http://godfat.org
http://rubyconf.tw/2012
http://ihower.tw/
http://etblue.blogspot.com
http://cardinalblue.com

Concurrency?

What We Have?

App Servers?

Me?

Q?

Caveats No disk I/O

No pipelined requests

No chunked encoding

No web sockets

No …

To make things simpler for now.

It's not faster for a userCaution

10 moms can't produce

1 child in 1 month

10 moms can produce

10 children in 10 months

Resource matters

We might not always have
enough processors

Resource matters

We might not always have
enough processors

Resource matters

We need multitasking

Imagine 15 children
have to be context switched
amongst 10 moms

Multitasking is not free

If your program context switches,
then actually it runs slower

Multitasking is not free

If your program context switches,
then actually it runs slower

Multitasking is not free

But it's more fair for users

http://www.flickr.com/photos/anantablamichhane/449433234

It's more fair if they are all served
equally in terms of waiting time

http://www.flickr.com/photos/auxesis/3600883127

I just want a drink!

#04

#03

#02

#01

#00

#05

Waiting
Processing
Context Switching

Sequential

Time

User ID

To illustrate the overall running time...

#04

#03

#02

#01

#00

#05

Waiting
Processing
Context Switching

Concurrent

Time

User ID

#04

#03

#02

#01

#00

#05

Waiting
Processing
Context Switching

Sequential

Time

User ID

#04

#03

#02

#01

#00

#05

Waiting
Processing
Context Switching

ConcurrentTotal Waiting and
Processing
Time

Time

User ID

#04

#03

#02

#01

#00

#05

Waiting
Processing
Context Switching

SequentialTotal Waiting and
Processing
Time

Time

User ID

Scalable != Fast
Scalable == Less complaining

Rails is not fast
Rails might be scalable

Scalable != Fast
Scalable == Less complaining

So,
When do we want
concurrency?

So,
When do we want
concurrency?

When context switching cost is
much cheaper than a single task

So,
When do we want
concurrency?

When context switching cost is
much cheaper than a single task
Or if you have much more cores than your
clients (= no need for context switching)

If context switching cost is at about 1 second

If context switching cost is at about 1 second

It's much cheaper than 10 months, so it
might be worth it

#04

#03

#02

#01

#00

#05

#04

#03

#02

#01

#00

#05

Time

User ID

Time

User ID

But if context switching cost is at about
5 months...

Do kernel threads context switch fast?

Do kernel threads context switch fast?

Do user threads context switch fast?

Do kernel threads context switch fast?

Do user threads context switch fast?

Do fibers context switch fast?

A ton of different concurrency models
then invented

A ton of different concurrency models
then invented

Each of them has different strengths to
deal with different tasks

A ton of different concurrency models
then invented

Each of them has different strengths to
deal with different tasks

Also trade off, trading with the ease of
programming and efficiency

So,
How many different types
of tasks are there?

Two patterns
Linear data dependency

of composite tasks

go to resturant

order food order drink

eat drink

order_food -> eat
order_tea -> drink

go to resturant

order food order drink

eat drink

go to resturant

order food order spices

mix

eat

Two patterns
Linear data dependency Mixed data dependency

of composite tasks

order_food -> eat
order_tea -> drink

[order_food, order_spices]
-> add_spices -> eat

prepare to share a photo

to facebook to flickr

save save

prepare to merge photos

from facebook from flickr

merge

save

prepare to share a photo

to facebook to flickr

save save

prepare to merge photos

from facebook from flickr

merge

save

Linear data dependency Mixed data dependency

prepare to share a photo

to facebook to flickr

save save

prepare to share a photo

to facebook to flickr

save save

CPU

CPU CPU

I/O I/O

CPU IOOne single task could be or bound

Linear data dependency Mixed data dependency

prepare to share a photo

to facebook to flickr

save save

prepare to merge photos

from facebook from flickr

merge

save

prepare to share a photo

to facebook to flickr

save save

prepare to merge photos

from facebook from flickr

merge

save

CPU

CPU CPU

I/O I/O

CPU

CPU

CPU

I/O I/O

CPU IOOne single task could be or bound

Linear data dependency Mixed data dependency

Concurrency?

What We Have?

App Servers?

Me?

Q?

• Performance

Separation of Concerns

• Performance

• Ease of programming

Separation of Concerns

• Performance (implementation)

• Ease of programming (interface)

Separation of Concerns

Advantages if interface is
orthogonal to its implementation

• Change implementation with ease

• Change implementation with ease

• Don't need to know impl detail in
order to use this interface

Advantages if interface is
orthogonal to its implementation

interface implementation

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

interface implementation

 Interface for
Linear data dependency

blocking threads

callback reactor fibers

CPU

I/O

order_food{ |food|
 eat(food)
}
order_tea{ |tea|
 drink(tea)
}

Callback

callback reactor

blocking threads

fibers

CPU

I/O

blocking threads

callback reactor fibers

CPU

I/O

eat(order_food)
drink(order_tea)

If we could control side-effect
and do some static analysis...

callback reactor

blocking threads

fibers

CPU

I/O

blocking threads

callback reactor fibers

CPU

I/O

Not going to happen on Ruby though

callback reactor

blocking threads

fibers

CPU

I/O

eat(order_food)
drink(order_tea)

If we could control side-effect
and do some static analysis...

 Interface for
Mixed data dependency

If callback is the only thing we have...

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

order_food is blocking order_spices
order_food{ |food|
 order_spices{ |spices|
 eat(add_spices(spices, food))
 }
}

We don't want to do this

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}

def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

Tedious, but performs better

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

food = order_food
spices = order_spices
superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order_food))

Ideally, we could do this with futures

but how?

Implementation

Forget about
data dependency for now

Implementation

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

Implementation: 2 main choices

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

def order_food
 Thread.new{
 food = order_food_blocking
 yield(food)
 }
end

with a thread

If order_food is I/O bound

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

def order_food
 make_request('order_food'){ |food|
 yield(food)
 }
end

with a reactor

If order_food is I/O bound

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

def order_food
 buf = []
 reactor = Thread.current[:reactor]
 sock = TCPSocket.new('example.
com', 80)
 request = "GET / HTTP/1.0\r\n\r\n"
 reactor.write sock, request do
 reactor.read sock do |response|
 if response
 buf << response
 else
 yield(buf.join)
ennnnd

with a very simple reactor

If order_food is I/O bound

https://github.com/godfat/ruby-server-exp/blob/
master/sample/reactor.rb

https://github.com/godfat/ruby-server-exp/blob/e841d5a7d33be5f0e4abbacd077c5fc8ed8345d2/sample/reactor.rb
https://github.com/godfat/ruby-server-exp/blob/e841d5a7d33be5f0e4abbacd077c5fc8ed8345d2/sample/reactor.rb

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

If order_food is CPU bound

def order_food
 Thread.new{
 food = order_food_blocking
 yield(food)
 }
end

with a thread

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

def order_food
 Thread.new{
 food = order_food_blocking
 yield(food)
 }
end

with a thread

If order_food is I/O bound

You don't have to care whether it's
CPU bound or
I/O bound with a thread

And you won't want to process a
CPU bound task inside a reactor
blocking other clients.

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

Summary

• Threads for CPU bound task

• Reactor for I/O bound task

Back to mixed data dependency

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

If we could have some other interface
than callbacks

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

Threads

food, spices = nil
t0 = Thread.new{ food = order_food }
t1 = Thread.new{ spices = order_spices }
t0.join
t1.join
superfood = add_spices(spices, food)
eat(superfood)

We can do it with threads easily

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

what if we still want callbacks, since then
we can pick either threads or reactors as
the implementation detail?

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

we could use threads
or fibers to remove
the need for defining
another callback (i.e.
start_eating)

instead of writing this...

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 start_eating(food, spices) if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 start_eating(food, spices) if food && spices
}
##
def start_eating food, spices
 superfood = add_spices(spices, food)
 eat(superfood)
end

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

condv = ConditionVariable.new
mutex = Mutex.new
food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 condv.signal if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 condv.signal if food && spices
}
##
mutex.synchronize{ condv.wait(mutex) }
 superfood = add_spices(spices, food)
 eat(superfood)

Turn threads callback back to synchronized likeThreads

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

Turn reactor callback to synchronized styleFibers
fiber = Fiber.current

food, spices = nil
order_food{ |arrived_food|
 food = arrived_food
 fiber.resume if food && spices
}
order_spices{ |arrived_spices|
 spices = arrived_spices
 fiber.resume if food && spices
}

Fiber.yield
 superfood = add_spices(spices, food)
 eat(superfood)

Threads vs Fibers

threads if your request is wrapped
inside a thread (e.g. thread pool
strategy)

fibers if your request is wrapped
inside a fiber (e.g. reactor + fibers)

we're using eventmachine + thread
pool with thread synchronization

we used to run fibers, but it didn't
work well with other libraries

e.g. activerecord's connection pool didn't respect
fibers, only threads

also, using fibers we're running a
risk where we might block the event
loop somehow we don't know

so using threads is easier if you
consider thread-safety is easier
than fiber-safety + potential risk of
blocking the reactor

and we can even go one step
further...

...into the futures!

this is also a demonstration that some

interfaces are only available to so
me

implementations

food = order_food
spices = order_spices
superfood = add_spices(spices, food)
eat(superfood)

or one liner
eat(add_spices(order_spices, order_food))

Who got futures?

• rest-core for HTTP futures

• celluloid for general futures

• also check celluloid-io for replacing
eventmachine

http://en.wikipedia.org/wiki/Futures_and_promises

https://github.com/cardinalblue/rest-core

https://github.com/celluloid/celluloid
https://github.com/celluloid/celluloid-io

a more complex (real world)
example
• update friend list from facebook

• get photo list from facebook

• download 3 photos from the list

• detect the dimension of the 3 photos

• merge above photos

• upload to facebook

this example shows a mix model of

linear and mixed data dependency

Concurrency?

What We Have?

App Servers?

Me?

Q?

Again:

we don't talk about chunked
encoding and web sockets or so for
now; simply plain old HTTP 1.0

Network
concurrency

Application
concurrency

sockets I/O bound tasks would be
ideal for an event loop to process
them efficiently

however, CPU bound tasks should
be handled in real hardware core

nginx, eventmachine,

libev, nodejs, etc.

e.g. kernel process/thread

we can abstract the http
server (reverse proxy)
easily, since it only needs
to do one thing and do it
well (unix philosophy)

that is, using an event loop

to buffer the requests

however, different application does
different things, one strategy might
work well for one application but
not the other

we could have an universal
concurrency model which could do
averagely good, but not perfect for
say, *your* application

that is why Rainbows provides all
possible concurrency models for you
to choose from

what if we want to make external
requests to outside world?

it's I/O bound, and could be the most significant
bottleneck, much slower than your favorite
database

e.g. facebook

before we jump into the detail...

let's see some concurrent popular ruby
application servers

Thin, Puma, Unicorn family

Default Thin

eventmachine (event loop)
for buffering requests

no application concurrency

you can run thin cluster for

application concurrency

Threaded Thin

eventmachine (event loop)
for buffering requests

thread pool to serve
requests

you can of course run

cluster for this

Puma

zbatery + ThreadPool
= puma

Unicorn

no network concurrency

worker process
application concurrency

Rainbows

another concurrency model
+ unicorn

Zbatery

rainbows with single
unicorn (no fork)

saving memories

Zbatery +
EventMachine
= default Thin

Rainbows +
EventMachine
= cluster default
Thin

Zbatery +
EventMachine +
TryDefer
(thread pool)
= threaded Thin

Each model has its strength to
deal with different task

blocking threads

callback reactor fibers

CPU

I/O callback reactor

blocking threads

fibers

CPU

I/O

Remember? threads for cpu operations,
reactor for I/O operations

What if we want to resize images,
encode videos?

it's of course CPU bound, and should be

handled in a real core/CPU

What if we want to do both? what
if we first request facebook, and
then encode video, or vice versa?

or we need to request facebook and encode

videos and request facebook aga
in?

The reactor could be used for http
concurrency and also making
external requests

Ultimate solution
for what i can think of right now

USE EVERYTHING

Rainbows +
EventMachine +
Thread pool +
Futures!

And how do we do that in a web application?
We'll need to do the above example in a
concurrent way. i.e.

To compare all the
application servers above

Thin (default)

Thin (threaded)

Puma

Unicorn

Rainbows

Zbatery

Passenger

Goliath

EventMachine

EventMachine

Thread pool

Worker processes

Worker processes + depends on configurations

Depends on configurations

I/O threads
libev

EventMachine

N/A

Thread pool

Thread pool

Worker processes

Process pool
Process/thread pool

N/A

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Wrapped
Rack

Network Interface Application

Concurrency?

What We Have?

App Servers?

Me?

Q?

