
Reactor Pattern
&

Event-Driven Programming
A scalable concurrent approach,
using EventMachine with Thin as an example

Lin Jen-Shin, http://godfat.org/

http://godfat.org
http://godfat.org

Reactor Pattern
&

Event-Driven Programming
A scalable concurrent approach,
using EventMachine with Thin as an example

Lin Jen-Shin, http://godfat.org/

http://godfat.org
http://godfat.org

Reactor Pattern
&

Event-Driven Programming
http://godfat.org/slide/2010-04-13-reactor-pattern-and-2.pdf

Lin Jen-Shin, http://godfat.org/

http://godfat.org/slide/2010-04-13-reactor-pattern-and-2.pdf
http://godfat.org/slide/2010-04-13-reactor-pattern-and-2.pdf
http://godfat.org
http://godfat.org

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

Event-Driven Programming
loop{
 # you control the flow
 do_something
}

register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

Reactor Pattern
loop{
 data = read
 handle data
}

register method(:handle)
loop{
 data = partial_read
 event = process data
 dispatch event if event
}

Table of Contents

•how Thin works

•how EventMachine works

Table of Contents

•how Thin works

•how EventMachine works

Table of Contents

•how Thin works

•how EventMachine works

•how AMQP works

Table of Contents

•how Thin works

•how EventMachine works

•how AMQP works

•how Unicorn and Rainbows! works

Reactor Pattern
Request

(resource)

Reactor Pattern
Request

(resource)
EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rack Rails
adapter rack env

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rails Rack Rails
adapter rack env

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rails

your rails
application

Rack Rails
adapter rack env

Thin (or AMQP)
(request handler)

how Thin works

how Thin works
•Thin::Server

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

•Thin::Connection
EventMachine event handler

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

•Thin::Connection
EventMachine event handler

•Thin::Request
partial HTTP request parsing
Rack env builder

Thin::Server

how Thin works

Backends::TcpServer

Thin::Server

how Thin works

Connection

Backends::TcpServer

Thin::Server

how Thin works

Request

Connection

Backends::TcpServer

Thin::Server

how Thin works

Request

Connection

Request

Connection

Backends::TcpServer

Thin::Server

how Thin works

Request

Connection

Request

Connection

Request

Connection

Backends::TcpServer

Thin::Server

how Thin works

how Thin works
thin 1.2.7 codename No Hup

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/backends/tcp_server.rb:16
in Thin::TcpServer#connect

EventMachine.start_server(
 @host, @port,
 Thin::Connection,
 &method(:initialize_connection))

rack app, backend ref, timeout, etc

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:42
in Thin::Connection#receive_data

 process if @request.parse(data)

true: parsed, so process!
false: we need more data!

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/request.rb:82
in Thin::Request#parse

@request = @parser.execute(@env, @data, @nparsed)

@env: Rack env
@data: HTTP header buffer
@nparsed: index of parsed data

how Thin works
thin 1.2.7 codename No Hup

// in ext/thin_parser/thin.c:335
// in thin.c#Thin_HttpParser_execute

thin_http_parser_execute(http, dptr, dlen, from);

// http: HTTP parser pointer
// dptr: HTTP header data pointer
// dlen: HTTP header data length
// form: previous @nparsed

how Thin works
thin 1.2.7 codename No Hup

// in ext/thin_parser/parser.rl:102
// in parser.rl#thin_http_parser_execute
// (it’s mongrel’s http parser)

size_t thin_http_parser_execute(
 http_parser *parser, const char *buffer,
 size_t len, size_t off)

how Thin works
thin 1.2.7 codename No Hup

Ragel is a finite state machine compiler with
output support for C, C++, Objective-C, D, Java
and Ruby source code.

how Thin works
thin 1.2.7 codename No Hup

Ragel is a finite state machine compiler with
output support for C, C++, Objective-C, D, Java
and Ruby source code.

•Mongrel HTTP parser

•Hpricot HTML/XML parser

• JSON parser

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:42
in Thin::Connection#receive_data

 process if @request.parse(data)

true: parsed, so process!
false: we need more data!

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:52
in Thin::Connection#process

if threaded?
 @request.threaded = true
 EventMachine.defer(method(:pre_process),
 method(:post_process))
else
 @request.threaded = false
 post_process(pre_process)
end

in lib/eventmachine.rb:1045
in EventMachine.defer

unless @threadpool
 require ‘thread’
 @threadpool = []
 @threadqueue = ::Queue.new
 @resultqueue = ::Queue.new
 spawn_threadpool
end
@threadqueue << [op||blk,callback]

how EventMachine works
eventmachine 0.12.10

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:68
in Thin::Connection#pre_process

@request.async_callback = method(:post_process)
...
response = AsyncResponse
catch(:async) do
 # Process the request calling the Rack adapter
 response = @app.call(@request.env)
end
response

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:95
in Thin::Connection#post_process

@response.status,
@response.headers,
@response.body = *result
...
@response.each do |chunk|
 trace { chunk }
 send_data chunk
end

• resources

• synchronous event demultiplexer

•dispatcher

• request handler (Thin::Connection)

Reactor Pattern

by wikipedia

Table of Contents

•how Thin works

•how EventMachine works

•how AMQP works

•how Unicorn and Rainbows! works

how EventMachine works
eventmachine 0.12.10

how EventMachine works
eventmachine 0.12.10

in lib/eventmachine.rb:571
in EventMachine.start_server

s = if port
 start_tcp_server server, port
 else
 start_unix_server server
 end
@acceptors[s] = [klass,args,block]

s: server (in Reactor) uuid
klass: Thin::Connection
args: []
block: method(:initialize_connection)

how EventMachine works
eventmachine 0.12.10

in lib/eventmachine.rb:50

case $eventmachine_library
 when :pure_ruby
 require ‘pr_eventmachine’
 when :extension
 require ‘rubyeventmachine’
 when :java
 require ‘jeventmachine’

how EventMachine works
eventmachine 0.12.10

in lib/pr_eventmachine.rb:318
in EventMachine.run
loop {
 @current_loop_time = Time.now
 break if @stop_scheduled
 run_timers # timer event
 break if @stop_scheduled
 # epoll, kqueue, etc
 crank_selectables
 break if @stop_scheduled
 # close scheduling if client timeout
 run_heartbeats
}

how EventMachine works
eventmachine 0.12.10

in lib/eventmachine.rb:1445
in EventMachine.event_callback

elsif opcode == ConnectionData
 c = @conns[conn_binding] or raise ConnectionNotBound,
 “received data #{data} for unknown signature:” \
 “#{conn_binding}”
 c.receive_data data
elsif opcode == LoopbreakSignalled

opcode: event enum (int)
conn_binding: connection uuid
data: received data

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/connection.rb:42
in Thin::Connection#receive_data

 process if @request.parse(data)

true: parsed, so process!
false: we need more data!

how EventMachine works
eventmachine 0.12.10

in lib/eventmachine.rb:1427
in EventMachine.event_callback

elsif opcode == ConnectionAccepted
 accep,args,blk = @acceptors[conn_binding]
 raise NoHandlerForAcceptedConnection unless accep
 c = accep.new data, *args
 @conns[data] = c
 blk and blk.call(c)
 c # (needed?)
elsif opcode == ConnectionCompleted

conn_binding: server uuid
data: connection uuid

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/backends/tcp_server.rb:16
in Thin::TcpServer#connect

EventMachine.start_server(
 @host, @port,
 Thin::Connection,
 &method(:initialize_connection))

rack app, backend ref, timeout, etc

how EventMachine works
eventmachine 0.12.10

in lib/pr_eventmachine.rb:256

module EventMachine
 TimerFired = 100
 ConnectionData = 101
 ConnectionUnbound = 102
 ConnectionAccepted = 103
 ConnectionCompleted = 104
 LoopbreakSignalled = 105
end

Table of Contents

•how Thin works

•how EventMachine works

•how AMQP works

•how Unicorn and Rainbows! works

how AMQP works

•AMQP::BasicClient
extend to AMQP::Client

how AMQP works

•AMQP::BasicClient
extend to AMQP::Client

•AMQP::Client
included into EventMachine::Connection

how AMQP works
amqp 0.6.7

how AMQP works
amqp 0.6.7

in lib/amqp.rb:79
in AMQP.start

EM.run{
 @conn ||= connect *args
 @conn.callback(&blk) if blk
 @conn
}

how AMQP works
amqp 0.6.7

in lib/amqp.rb:18
in AMQP.connect

Client.connect *args

how AMQP works
amqp 0.6.7

in lib/amqp/client.rb:188
in AMQP::Client.connect

opts = AMQP.setting.merge(opts)
EM.connect opts[:host], opts[:port], self, opts

how Thin works
thin 1.2.7 codename No Hup

in lib/thin/backends/tcp_server.rb:16
in Thin::TcpServer#connect

EventMachine.start_server(
 @host, @port,
 Thin::Connection,
 &method(:initialize_connection))

rack app, backend ref, timeout, etc

how EventMachine works
eventmachine 0.12.10

in lib/eventmachine.rb:1571
in EventMachine.klass_from_handler

klass = if handler and handler.is_a?(Class)
 raise ArgumentError,
 “must provide module or #{klass.name}” unless
 klass >= handler
 handler
elsif handler
 Class.new(klass){ include handle }
else
 klass
end

klass: EventMachine::Connection
handler: Thin::Connection or AMQP::Client

how AMQP works
amqp 0.6.7

in lib/amqp/client.rb:115
in AMQP::Client#receive_data

while frame = Frame.parse(@buf)
 log ’receive’, frame
 process_frame frame
end

how AMQP works

•AMQP::Frame
basic building block of AMQP data stream

how AMQP works

•AMQP::Frame
basic building block of AMQP data stream

•AMQP::Buffer
frame buffer and parser

how AMQP works

•AMQP::Frame
basic building block of AMQP data stream

•AMQP::Buffer
frame buffer and parser

•AMQP::Protocol::Connection
used in BasicClient#process_frame

how AMQP works

•MQ
easy to use, high level wrapper

how AMQP works

•MQ
easy to use, high level wrapper

•MQ::Queue
the entities which receive messages

how AMQP works

•MQ
easy to use, high level wrapper

•MQ::Queue
the entities which receive messages

•MQ::Exchange
the entities to which messages are sent

how AMQP works

•MQ
easy to use, high level wrapper

•MQ::Queue
the entities which receive messages

•MQ::Exchange
the entities to which messages are sent

by wikipedia

how AMQP works
default connection
MQ.new.queue(‘name’)

default exchange (direct)
MQ.new.publish(‘name’)

#-- convenience wrapper (read: HACK)
for thread-local MQ object
MQ.queue(‘name’)
MQ.publish(‘name’)

how AMQP works
MQ.queues # all created queues
MQ.exchanges # all created exchanges
MQ.direct # direct exchange
MQ.fanout # fanout exchange
MQ.topic # topic exchange
MQ.headers # headers exchange

Table of Contents

•how Thin works

•how EventMachine works

•how AMQP works

•how Unicorn and Rainbows! works

Unicorn? .

Unicorn? .
• is not event-driven!

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Rainbows!?

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Rainbows!?
•could be event-driven

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Rainbows!?
•could be event-driven

•also pure Ruby,
except...

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Rainbows!?
•could be event-driven

•also pure Ruby,
except...

• *any* concurrency
model

Unicorn? .
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Rainbows!?
•could be event-driven

•also pure Ruby,
except...

• *any* concurrency
model

•provide network
concurrency

Unicorn? . Rainbows!?

•RevFiberSpawn• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

•RevThreadSpawn
• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

•RevThreadSpawn

•FiberSpawn

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

•RevThreadSpawn

•FiberSpawn

•FiberPool

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

•RevThreadSpawn

•FiberSpawn

•FiberPool

•NeverBlock

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?

•RevFiberSpawn

•Revactor

•ThreadPool

•Rev

•ThreadSpawn

•EventMachine

•RevThreadSpawn

•FiberSpawn

•FiberPool

•NeverBlock

•RevThreadPool

• is not event-driven!

•except Mongrel
HTTP parser, all
written in Ruby

•yet *super fast* for
fast client

•preforking worker
with blocking I/O

Unicorn? . Rainbows!?
 unicorn master
 _ unicorn worker[0]
 | _ client[0]
 _ unicorn worker[1]
 | _ client[1]
 _ unicorn worker[2]
 | _ client[2]
 ...
 _ unicorn worker[M]
 _ client[M]

Unicorn? . Rainbows!?
 unicorn master
 _ unicorn worker[0]
 | _ client[0]
 _ unicorn worker[1]
 | _ client[1]
 _ unicorn worker[2]
 | _ client[2]
 ...
 _ unicorn worker[M]
 _ client[M]

 rainbows! master
 _ rainbows! worker[0]
 | _ client[0,0]
 | _ client[0,1]
 | ...
 | _ client[0,N]
 _ rainbows! worker[1]
 | _ client[1,0]
 | ...
 | _ client[1,N]
 ...
 _ rainbows! worker[M]
 _ client[M,0]
 ...
 _ client[M,N]

Unicorn? . Rainbows!?
 unicorn master
 _ unicorn worker[0]
 | _ client[0]
 _ unicorn worker[1]
 | _ client[1]
 _ unicorn worker[2]
 | _ client[2]
 ...
 _ unicorn worker[M]
 _ client[M]

 rainbows! master
 _ rainbows! worker[0]
 | _ client[0,0]------\ ___app[0]
 | _ client[0,1]-------\ /___app[1]
 | _ client[0,2]-------->--< ...
 | ... __/ `---app[P]
 | _ client[0,N]----/
 _ rainbows! worker[1]
 | _ client[1,0]------\ ___app[0]
 | _ client[1,1]-------\ /___app[1]
 | _ client[1,2]-------->--< ...
 | ... __/ `---app[P]
 | _ client[1,N]----/
 _ rainbows! worker[M]
 _ client[M,0]------\ ___app[0]
 _ client[M,1]-------\ /___app[1]
 _ client[M,2]-------->--< ...
 ... __/ `---app[P]
 _ client[M,N]----/

Unicorn? . Rainbows!?
 static files
 |
 nginx |--> slow actions --> Rainbows!
 |
 `--> fast actions --> Unicorn

Unicorn? . Rainbows!?
http://unicorn.bogomips.org/ http://rainbows.rubyforge.org/

 static files
 |
 nginx |--> slow actions --> Rainbows!
 |
 `--> fast actions --> Unicorn

http://unicorn.bogomips.org
http://unicorn.bogomips.org
http://unicorn.bogomips.org
http://unicorn.bogomips.org

how Unicorn works
unicorn 0.97.0

how Unicorn works
unicorn 0.97.0

in lib/unicorn.rb:270
in Unicorn::HttpServer#start

maintain_worker_count

how Unicorn works
unicorn 0.97.0

in lib/unicorn.rb:602
in Unicorn::HttpServer#maintain_worker_count

(off = WORKER.size - worker_process) == 0 and return
 off < 0 and return spawn_missing_workers

how Unicorn works
unicorn 0.97.0

in lib/unicorn.rb:591
in Unicorn::HttpServer#spawn_missing_workers

worker = Worker.new(worker_nr, Unicorn::Util.tmpio)
before_fork.call(self, worker)
WORKERS[fork {
 ready_pipe.close if ready_pipe
 self.ready_pipe = nil
 worker_loop(worker)
}] = worker

how Unicorn works
unicorn 0.97.0

in lib/unicorn.rb:705
in Unicorn::HttpServer#worker_loop

ready.each do |sock|
 begin
 process_client(sock.accept_nonblock)
 # workers load balancing here!! ^^

how Unicorn works
unicorn 0.97.0

in lib/unicorn.rb:630
in Unicorn::HttpServer#process_client

read request, call app, write app response
def process_client(client)
 client.fcntl(Fcntl::F_SETFD, Fcntl::FD_CLOEXEC)
 response = app.call(env = REQUEST.read(client))
 # [...]
 HttpResponse.write(client, response,
 HttpRequest::PARSER.headers?)

how Unicorn works
unicorn 0.97.0

in lib/unicorn/http_request.rb:31
in Unicorn::HttpRequest#read

Does the majority of the IO processing.
It has been written in Ruby using about 8
different IO processing strategies.
[...]
Anyone who thinks they can make it faster is
more than welcome to take a crack at it.

how Rainbows! works
rainbows 0.91.0

how Rainbows! works
rainbows 0.91.0

Sorry! To be continued......

how Rainbows! works
rainbows 0.91.0

Sorry! To be continued......

?

