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Inetwork I/O]| while make [CPU]| idle.

® you can replace [network I/O| and [CPU]
with all other resources like disc 1/O/,
'memory I/O], etc.
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sprite.onEnterFrame = lambda{
sprite.x += 1

}




sprite.onEnterFrame = lambda{
sprite.x += 1

}

application.register sprite
30.times{ # event loop, also called game Lloop
events = application.pop event queue
events.each{ |event]
application.dispatch event

}

# model/view separation
application.draw application.sprites
}
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Request E(\j/ee;ﬂ\ﬂ?pclg(g? Thin (or AMQP)
(resource) + dispatcher) (request handler)
Rack Rails Rack Thin
adapter handler
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® Thin::Server

® Thin: :Backends: : TcpServer
# communicate with EventMachine

® Thin: :Connection
: antMachine event handle
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