Reactor Pattern

&

Event-Driven Programming

A scalable concurrent approach,
using EventMachine with Thin as an example

http://godfat.org
http://godfat.org

Reactor Pattern

&

Event-Driven Programming

http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf

http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf
http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf
http://godfat.org
http://godfat.org

Table of Contents

Table of Contents

® concurrency, why and how in network

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

concurrency, why
and how In network

concurrency, why
and how In network

® [network I/O] is slow, we shouldn't wait for
Inetwork I/O]| while make [CPU]| idle.

concurrency, why
and how In network

® [network I/O] is slow, we shouldn't wait for
Inetwork I/O]| while make [CPU]| idle.

® you can replace [network I/O] and [CPU]|
with all other resources like disc [/O |,

concurrency, why
and how In network

® [network I/O] is slow, we shouldn't wait for
Inetwork I/O]| while make [CPU]| idle.

® you can replace [network I/O| and [CPU]
with all other resources like disc 1/O/,
'memory I/O], etc.

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

Event-Driven Programming

to the rescue

Event-Driven Programming

Event-Driven Programming

Event-Driven Programming

Event-Driven Programming

Event-Driven Programming

Loop{
you control the flow

Event-Driven Programming

reglster method(:do something)

loop{ Loop{
you control the flow # event loop control the flow,
do somethinc # later 1t calls your callback

Event-Driven Programming

reglster method(:do something)

Loop{
event loop control the flow,
later 1t calls your callback

Event-Driven Programming

reglster method(:do something)

— Loop{
event loop control the flow,
later 1t calls your callback

Event-Driven Programming

reglster method(:do something)

— loop{ !
event loop control [the flow,
later 1t calls youn callback

Event-Driven Programming
INn Flash with Ruby syntax

Event-Driven Programming
INn Flash with Ruby syntax

® game loop, an example of event loop

Event-Driven Programming
INn Flash with Ruby syntax

® game loop, an example of event loop

Event-Driven Programming
INn Flash with Ruby syntax

® game loop, an example of event loop

Event-Driven Programming
INn Flash with Ruby syntax

sprite.onEnterFrame = lambda{
sprite.x += 1

}

sprite.onEnterFrame = lambda{
sprite.x += 1

}

application.register sprite
30.times{ # event loop, also called game Lloop
events = application.pop event queue
events.each{ |event]
application.dispatch event

}

model/view separation
application.draw application.sprites
}

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

Reactor Pattern

Reactor Pattern

Loop{
data = read

Reactor Pattern

register method(:handle)
loop{ Loop{
data = read data = partial read

Event-Driven Programming

reglster method(:do something)
Loop{ Loop{

you control the flow # event loop control the flow,
00 somethinc # later 1 S 2 allback

Reactor Pattern

register method(:handle)

loop{ Loop{
data = read data = partial read

Reactor Pattern

Reactor Pattern

® resources # e.g. network I/O

Reactor Pattern

® resources # e.g. network I/O

® synchronous event demultiplexer
1.e. the blocking event loop

Reactor Pattern

® resources # e.g. network I/O

® synchronous event demultiplexer
1.e. the blocking event loor

Reactor Pattern

® resources # e.g. network I/O

® synchronous event demultiplexer
1.e. the blocking event loop

Reactor Pattern

Request
()

Reactor Pattern

Request EventMachine

Reactor Pattern

kit EventMachine Thin (or AMQP)

(demultiplexer

(resource) + dispatcher)

(request handler)

Reactor Pattern

IS EventMachine Thin (or AMQP)
(request handler)

(demultiplexer

(resource) + dispatcher)

Rack Thin
handler

Reactor Pattern

EventMachine :
Request (demultiplexer Thin (or AMQP)

+ dispatcher)

(resource) (request handler)

Rack Rails Rack Thin
adapter handler

Reactor Pattern

Request Ec\al/eegﬂ\ll?pclg(g? Thin (or AMQP)
(resource) + dispatcher) (request handler)
Rack Rails Rack Thin
adapter handler

Reactor Pattern

application

Request E(\j/ee;ﬂ\ﬂ?pclg(g? Thin (or AMQP)
(resource) + dispatcher) (request handler)
Rack Rails Rack Thin
adapter handler

Reactor Pattern

FEventMachine is a generic network I/O server/client
library due to I/O and request handler separation in

Reactor Pattern

® EventMachine (Ruby)

Reactor Pattern

® EventMachine (Ruby)

Reactor Pattern

® EventMachine (Ruby)

Reactor Pattern

® EventMachine (Ruby)

Reactor Pattern

® select (POSIX)

Reactor Pattern

® select (POSIX)

Reactor Pattern

® select (POSIX)

. A

Reactor Pattern

® select (POSIX)

()
A

Table of Contents

® concurrency, why and how in network

® Event-Driven Programming explained in
Flash with Ruby syntax

® Reactor Pattern in EventMachine with Thin

how Thin works

® Thin::Server

how Thin works

® Thin::Server

® Thin: :Backends: : TcpServer
communicate with EventMachine

how Thin works

® Thin::Server

® Thin: :Backends: : TcpServer
communicate with EventMachine

® Thin: :Connection

how Thin works

® Thin::Server

® Thin: :Backends: : TcpServer
communicate with EventMachine

® Thin: :Connection
: antMachine event handle

how Thin works

Sorry! To be continued

how Thin works

Sorry! To be continued......

